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Independent Component Analysis (ICA)

* Explores spatial-temporal properties of resting
state fMRI

A multivariate, data-driven approach that
doesn’t require a priori knowledge

* Able to extract structured noise (e.g.

physiological) and interacting networks -
macro-seed regions
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MELQODIC Is the ICA tool In FSL
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Single-session ICA Is useful for
denoising fMRI data
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Commandline for Denoising

fd regfilt —i filtered func 4D.nil.gzodenoised 4D.nii.gz
—d folder.ica/melodic. mixf “2,3,10”

Key:

filtered func_4D.nii.gz: preprocessed fMRI data

denoised 4D.nii.gz: denoised fMRI data output file
melodic_mix: design matrix with components

-f “2,3,10": f stands for filter; the number refer to noisy comp’s
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Problem: How do you compare components
between subjects following session ICA?

Subject 1 Subject 2

e 20 components e 13 components
e “DMN” componentis « “DMN” component is

5t component 10t component

Solution: Run TICA on group to acquirerobust group components
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Group components allow you to identify RSN’s
of Interest
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Questions

Q: Why standardize into Z-maps?
A: Measures SNR (accounts for background noise)

Q: How to apply stricter control for false positives?
A: Increase threshold level (e.g. 0.5->0.66)
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Match ICA group components with previously
|dent|f|ed RSN S, such as Smlth et aI 2009

DMN Sensorimotor  Pain Language
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High correspondence between functional networks
during task and at rest
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Next, use dual regression to assess network
differences by group and/or condition

 Goal: Derive subject-specific networks
corresponding to ICA group components
e TwoO steps:

1) Spatial regression = obtain sub. timeseries
2) Temporal regression - obtain sub. spatial maps
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Commandline

dual _regression grouplCA.gica/groupmelodic.ica/melodic_IC
1 design.mat design.con 500 output cat grouplCA.qgica/ filelist’

KEY:

melodic_IC: 4D file with ICA group components (can split)
design files: your design matrix for cross-subject modelling
ouput: the name of your output directory

filelist: filepaths where preprocessed, standard space 4D files
are stored
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DR Output Files

1) dr_stagel sub#: timeseries per subject w/ separate
column for each component

2) dr_stage2 sub#: spatial maps for each subject with
separate 3D image per component

3) dr_stage2 subZ: normalized spatial maps
4) dr_stage2_ic{#}. 4D file of group component, each
3D image is one subject

5) dr_stage3_ic{#}. cross-subject statistics based on
your design matrix (randomise)



University of Southern California

Brief synopsis of third-level
analysis:

. Experiment with 2 sessions per subject:

. 1) Run the TICA to get group components by adding all subjects/sessions as input. Order the inputs so that the
two sessions are next to each other (e.g. subject one's session 1 and 2 are inputs 1 and 2; subject two's session 1
and session 2 are inputs 3 and 4 ...etc.). This will make averaging easier later on.

. 2) For your component of interest, say IC8, run Dual Regression with a *fixed effects matrix.

. **I'm pretty sure the matrix you enter in here is mostly irrelevant though, since your main interest is in getting
subject-level IC8 maps (meaning you can ignore the dr_stage3 output, which the matrix is for)

. 3) Use fslsplit on the dr_stage2 IC8.nii.gz file. This is a 4D image file where the subjects' IC8 maps are stacked.
Now the split volumes will be numbered in the same order as your inputs.

. 4) fsimerge -t each subject's two session maps to get a single subject 4D file, then use fsimaths -Tmean on that
file to get the subject's average.

. 5) Finally, fsimerge -t ALL of the averaged subject files to create an IC8 4D file. The file is stacked so that each
3D image represents a single averaged subject.

. 6) Feed this IC8 file into randomise with your design matrix of choice.
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Dual regression helps determine how components
differ by condition

* Results will often show
areas of coactivity that donft
lie within a given network
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1)

2)

3)

Possible Analyses

Examine differences in functional networks by condition or
subject populations - randomise

Example: How does the DMN of smokers differ from non-

smokers?
Debate over control-only group components

Use a priori knowledge to examine changes in network inter-
activity - correlate component timeseries in stagel output

Example: In smokers, how is the anti-correlation between the
DMN and ECN affected by nicotine withdrawal?

Perform covariate analysis by constructing appropriate matrix for
randomise - randomise w/ demeaned behavioral variable

Example: How does network activity vary with cortisol level?



