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Abstract

Functional connectivity analyses of resting-state fMRI data are rapidly emerging as highly efficient
and powerful tools for in vivo mapping of functional networks in the brain, referred to as intrinsic
connectivity networks (ICNs). Despite a burgeoning literature, researchers continue to struggle with
the challenge of defining computationally efficient and reliable approaches for identifying and
characterizing ICNs. Independent component analysis (ICA) has emerged as a powerful tool for
exploring ICNs in both healthy and clinical populations. In particular, temporal concatenation group
ICA (TC-GICA) coupled with a back-reconstruction step produces participant-level resting state
functional connectivity (RSFC) maps for each group-level component. The present work
systematically evaluated the test-retest reliability of TC-GICA derived RSFC measures over the
short-term (< 45 minutes) and long-term (5 — 16 months). Additionally, to investigate the degree to
which the components revealed by TC-GICA are detectable via single-session ICA, we investigated
the reproducibility of TC-GICA findings. First, we found moderate-to-high short- and long-term test-
retest reliability for ICNs derived by combining TC-GICA and dual regression. Exceptions to this
finding were limited to physiological- and imaging-related artifacts. Second, our reproducibility
analyses revealed notable limitations for template matching procedures to accurately detect TC-
GICA based components at the individual scan level. Third, we found that TC-GICA component's
reliability and reproducibility ranks are highly consistent. In summary, TC-GICA combined with
dual regression is an effective and reliable approach to exploratory analyses of resting state fMRI
data.
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1. Introduction

Functional connectivity of resting-state fMRI data is rapidly emerging as a highly efficient and
powerful tools for in vivo mapping of neural circuitry in the human brain. Essentially, resting
state functional connectivity (RSFC) approaches detect coherent patterns of low-frequency (<

Corresponding author xinian.zuo@nyumc.org (Xi-Nian Zuo), amclarekelly@gmail.com (Clare Kelly), jsadelstein@gmail.com (Jonathan
S. Adelstein), donaldk737@aol.com (Donald F. Klein), castef0l@nyumc.org (F. Xavier Castellanos), michael.milham@nyumc.org
(Michael P. Milham).



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zuo et al.

Page 2

0.1 Hz) fluctuations in the resting state BOLD signal, referred to as “intrinsic connectivity
networks” (ICNs). Despite a burgeoning literature demonstrating the utility of RSFC
approaches (Fox and Raichle, 2007), researchers continue to struggle with defining
computationally efficient and reliable approaches for identifying and characterizing ICNs.

Inspired by a seminal demonstration of RSFC within the motor system (Biswal et al., 1995),
seed-based correlation represents the dominant approach for studying RSFC. This method
detects ICNs by identifying voxels whose timeseries significantly correlate with the mean
timeseries of voxels within an a priori seed region of interest (ROI). In addition to generating
highly detailed maps of complex functional systems (Margulies et al., 2007; Zhang et al.,
2008; Di Martino et al., 2008; Roy et al., 2009; Nioche et al., 2009), seed-based correlation
analyses are commonly used to identify abnormalities in ICNs related to psychopathology
(Greicius, 2008; Broyd et al., 2009), as well as relationships between RSFC measures and
individual differences in behavioral (Kelly etal., 2008; Fox et al., 2007) and trait characteristics
(Di Martino et al., 2009). Overall, this mass-univariate approach has proven to be a powerful,
efficient, and reliable tool for neuroimaging (Shehzad et al., 2009).

Seed-based analytic approaches are not without limitation, however. Most notably, the ICNs
derived with seed-based correlation are highly dependent upon choice of a seed ROI. Further,
the seed ROI timeseries includes indeterminate noise, in contrast to the idealized task design
matrix used in task-based analyses. While several preprocessing strategies commonly are
employed to remove noise (e.g., regressing out the global signal), such corrections can affect
the data (e.g., inducing artifactual negative correlations) (Murphy et al., 2009). Finally, as a
general linear model (GLM)-based univariate method, seed-based correlation disregards
relationships among multiple voxels (i.e., it only analyzes the relationship between the seed
timeseries and one other voxel at a time).

In light of these issues, neuroimaging researchers have adopted a multivariate signal processing
method known as independent component analysis (ICA) to explore the spatial-temporal
properties of resting state fMRI data (Kiviniemi, 2003; van de Ven et al., 2004; Beckmann et
al., 2005). In theory, without any explicit a priori knowledge, ICA aims to separate spatially
(spatial ICA: sICA) or temporally (temporal ICA: tICA) independent patterns from their
linearly mixed BOLD signals via maximization of mutual independence among components
(Stone et al., 1999). Generally, sICA is the more appropriate choice for analyzing resting state
fMRI data given the small number of time points included in most fMRI datasets. Thus, we
also used sICA in this paper. For simplicity, in the remainder of this paper, we refer to SICA
as ICA.

ICA offers several potential advantages over seed-based correlation. First, as noted above, ICA
is a multivariate, data-driven approach. It thus requires no a priori hypothesis or model of brain
activity. Second, by taking account of multiple simultaneous voxel-voxel relationships, ICA
detects interacting networks of regions, rather than the single region-dominant (i.e., seed ROI)
networks produced by seed-based correlation. Finally, ICA is capable of extracting noise (e.g.,
scanner, physiological and motion artifacts) from the desired dataset. ICA-based denoising is
fully data-driven, automatic (Thomas et al., 2002; Perlbarg et al., 2007; Tohka et al., 2008) and
relatively unaffected by different temporal sampling rates (DeLuca et al., 2006), thus avoiding
the need for a priori specification of noise that arises in seed-based correlation.

Despite its promise, the unconstrained nature of ICA raises a significant challenge for group-
based analyses. If a separate ICA is conducted for each participant in a study, a researcher must
first match the components between participants before being able to carry out group analyses
(Wang and Peterson, 2008) — a task that is complicated by the unconstrained component order
in ICA (Hyvarinen and Oja, 2000). Different numbers of components also can be extracted for
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different individuals, further complicating the challenge. Accordingly, some have advocated
carrying out a single ICA analysis across an entire group of participants (see (Guo and Pagnoni,
2008) and (Calhoun et al., 2009) for reviews on various group ICA methods). This can be
accomplished in a relatively efficient manner by carrying out an ICA on a single large dataset
by temporally concatenating all individual datasets (Calhoun et al., 2001; Beckmann et al.,
2005). This method is referred to as temporal concatenation group ICA (TC-GICA). Based
upon group-level components identified by TC-GICA, individual participant components can
be generated using approaches such as principal component analysis (PCA) back-projection
(Calhoun et al., 2001), or more recently developed GLM dual regression approaches (Filippini
et al., 2009; Beckmann et al., 2009). The functionally relevant components of all group-level
components are referred to as ICNs.

The potential utility of group-based ICA approaches has been demonstrated by an increasing
number of studies examining clinical populations. Clinical samples with Alzheimer's disease
or dementia (Greicius et al., 2004; Seeley et al., 2009; Rombouts et al., 2009), schizophrenia
(Jafrietal.,2008), depression (Greicius etal., 2007), epilepsy (Zhang et al., 2009), Huntington's
disease (Wolf et al., 2008), and amyotrophic lateral sclerosis (Mohammadi et al., 2009) have
demonstrated altered ICA-derived ICNs. Despite this promising start, it is important to note
that several factors may reduce the reliability of ICA approaches for mapping RSFC. First, the
resting state is inherently unconstrained and thus subject to variation related to a participant's
state. Second, factors unrelated to the participant can introduce significant variability (e.qg.,
inter-session differences in scanner performance). Third, no ideal means exist for assessing the
optimal number of components. Finally, the initial values for ICA estimation are random, which
introduces further variability into the findings (Himberg et al., 2004; Yang et al., 2008). In
considering these factors, in order to provide biomarkers based on neural circuitry, the test-
retest (TRT) reliability of ICA-derived ICNs must first be assessed.

Several groups have addressed the reliability or consistency of ICA. Damoiseaux et al.
(2006) demonstrated 10 qualitatively consistent ICNs across subjects by applying tensor ICA
to resting state fMRI data from two imaging sessions separated by 5 — 14 days. They found
that (1) spatial patterns of the 10 ICNs from the two sessions were quite consistent by visual
inspection, and (2) regions exhibiting the highest RSFC within a component tended to exhibit
the least variation across 100 surrogate datasets created via bootstrapping. Recently, using TC-
GICA with three initial PCA data reductions, Chen et al. (2008) demonstrated the consistency
of ICA-derived ICNs across 5 sessions within 16 days. Two more recent studies also showed
high reproducibility and inter-rater selection reliability of an ICA-derived “default mode”
network (Meindl et al., 2009; Franco et al., 2009). The above four studies focused only on the
spatial consistency of ICNs across occasions within approximately 2 weeks, and they did not
quantitatively assess both the voxel-wise intra- and inter-session TRT reliability of each group-
level component.

In the current paper, we address the short-term (< 1 hour) and long-term (> 5 months) TRT of
group-level components. We conducted these analyses with a previously published resting
state fMRI dataset of 26 participants scanned three times on two different occasions (Shehzad
etal., 2009; Zuoetal., 2010). Specifically, we: (a) used the TC-GICA approach to derive group-
level components across all participants and sessions, (b) used dual regression to back-
reconstruct each group-level component for each of the 3 scans at the individual participant-
level, and (c) calculated voxel-wise intra- and inter-session intraclass correlation (ICC) on the
basis of these individual-level back-reconstructed components. Based on prior work (Shehzad
et al., 2009), we expected to find moderate-to-high TRT reliability for the various ICNs
detected except for those components reflecting physiological or scanner-related noise.
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While the present work relied upon the group-based TC-GICA approach for detecting
components, alternative ICA-based analytic strategies exist. In particular, many studies have
employed individual participant based ICA approaches, combined with a template matching
for a group analysis (Greicius et al., 2004, 2007; Seeley et al., 2009; Mohammadi et al.,
2009). To date, no study has systematically examined the issue of how easily components
identified by group ICA can be detected using individual ICA. Thus, a secondary goal of the
present work was to assess the reproducibility of components detected by TC-GICA at the
participant-level. Specifically, the reproducibility analysis measured the degree to which
components identified using group ICA were present in the results of single-participant ICA.
For each participant, we carried out an individual ICA for each of the 3 scans. Then, for each
group-level component, a commonly employed template matching procedure (Garrity et al.,
2007) was applied to identify the best matching component in each of the three ICA analyses.
These best-matched individual-level components were used to evaluate the reproducibility.

Finally, we ranked the group-level components according to their TRT reliability and
reproducibility. We hypothesized that functionally relevant ICNs would show high ranks in
both TRT reliability and reproducibility. In contrast, we predicted that the components
corresponding to various sources of physiological noise and scanner artifact would exhibit both
low TRT reliability and reproducibility.

2. Materials and Methods
2.1. Participants

2.2. Imaging

Twenty-six participants (mean age 20.5 + 4.8 years, 11 males) were scanned three times. The
data were used in our earlier studies to examine the TRT reliability of seed-based correlation
measures (Shehzad et al., 2009; Zuo et al., 2010). The participants had no history of psychiatric
or neurological illness, as confirmed by clinical assessment. Informed consent was obtained
prior to participation. Data were collected according to protocols approved by the institutional
review boards of New York University (NYU) and the NYU School of Medicine.

methods

Three resting-state scans were obtained for each participant using a Siemens Allegra 3.0 Tesla
scanner. Each scan consisted of 197 contiguous EPI functional volumes (TR = 2000 ms; TE
=25 ms; flip angle = 90°, 39 slices, matrix = 64 x 64; FOV = 192 mm; acquisition voxel size
=3 x 3 x 3 mm). Scans 2 and 3 were conducted in a single scan session, 45 minutes apart, and
were 5-16 months (mean 11 + 4) after scan 1. All individuals were asked to relax and remain
still with their eyes open during the scan. For spatial normalization and localization, a high-
resolution T1-weighted magnetization prepared gradient echo sequence was also obtained
(MPRAGE, TR = 2500 ms; TE = 4.35 ms; Tl =900 ms; flip angle = 8°; 176 slices, FOV =
256mm).

2.3. Data preprocessing

Data preliminary processing was carried out using FMRIB Software Library (FSL: version
4.1): 1) slice timing correction for interleaved acquisitions using Sinc interpolation with a
Hanning windowing kernel; 2) head motion correction via a robust and accurate intra-modal
volume linear registration (vcrurr) (Jenkinson et al., 2002); 3) spatial smoothing with a 6mm
FWHM Gaussian kernel; 4) 4D intensity normalization of all volumes by the same factor; 5)
spatial normalization via estimating a B-spline basis nonlinear transformation from an
individual functional space to MNI152 standard brain space (rurreart) (Andersson et al.,
2007). After preprocessing, we excluded one participant from our subsequent analyses due to
large amount of head motion in one of the three scans. The final data for this study thus consisted
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of 75 scans from 25 participants. These data are fully available for downloading via
http://www.nitrc.org/projects/nyu_trt.

2.4. Overall analytic strategy
Figure 1A illustrates the overall analytic strategy:

* TRT reliability: component maps. First, we employed TC-GICA to generate
group-level components across all 25 participants and 3 scans/participant (total = 75
scans). Next, for each group-level component, we (1) used dual regression (DR) to
back-reconstruct the corresponding individual scan component (i.e., individual-level
DR component) for each of the 75 scans, and (2) calculated voxel-wise intra-session
(scan 2 vs. scan 3) and inter-session (scan 1 vs. scan 2/3) TRT reliability based upon
the individual-level DR components.

* Reproducibility: component maps. We investigated the extent to which group-level
components are detectable when ICA is carried out at the individual scan level. This
was accomplished by 1) carrying out a single scan ICA for each of the 75 individual
scans (i.e., individual-level ICA), and then 2) for each group-level component,
determining the best match between a template component and those identified in
each of the 75 individual-level ICA runs (i.e., individual-level components). We
explored the potential impact of the specific strategy employed for generating
template components by repeating our analyses with two different template
component sets: 1) the group-level TC-GICA component set (i.e., TC-GICA template
matching) and 2) the individual-level DR components set (i.e., DR template
matching).

* Rank ordering: component maps. We rank-ordered the group-level components
based upon their TRT reliability and reproducibility.

*  TRT reliability: estimation of the number of components. For each of five estimation
methods, we assessed intra- and inter-session TRT reliability for the number of
components estimated for an individual scan.

2.5. Independent component analysis

2.5.1. Probabilistic ICA—We briefly review probabilistic ICA and relevant properties that
are important for applications in resting state fMRI studies (Beckmann and Smith, 2004). The
ICA decomposes a resting state fMRI dataset into a linear mixture of spatially independent
components (ICs) plus Gaussian noise. It has been implemented as the multivariate exploratory
linear optimized decomposition into independent components (vecooic) toolbox in FSL. It has
the following mathematical representation:

X=AS+E. (1)

In (1),
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For resting state fMRI data, T is the number of time points, N is the number of voxels, and P
is the number of ICs. These matrices can be further summarized and explained as follows: X
=[xq, X2, - - -, X7]Y, in which each row vector represents a resting state BOLD volume at a time
point t; S =[sq, Sy, - - -, Sp], in which the row vectors represent each IC; A = [ay, ap, - - -,
at]t, in which each row includes the contributions of all P ICs to the resting state fMRI BOLD
volume at the corresponding time point (thus each column constitutes a timeseries); E = [e,
ey, - -, e7]t denotes the background multivariate Gaussian noise. Accordingly, this method
decomposes a resting state fMRI BOLD volume into several spatially independent volumes
(i.e., ICs) and relevant timeseries. Of note, explicit modeling of the background Gaussian noise
effectively can reduce the noise-induced asymptotic bias of the ICA estimation (Beckmann et
al., 2005; Cordes and Nandy, 2007). For a given number of ICs, the ICs can be solved by a
maximum likelihood estimation using the FastICA algorithm (Hyvarinen and Oja, 2000;
Beckmann and Smith, 2004). In the current work, these algorithms are not our focus and
therefore their details are not explained here.

2.5.2. Group-level components—TC-GICA was used to generate group-level
components across all participants and sessions (Beckmann et al., 2005). This approach
consists of 3 fundamental steps: 1) Estimation of a mean covariance matrix: all 75 individual
fMRI datasets are spatially concatenated in MNI152 standard space and used to estimate the
mean covariance matrix; 2) PCA reduction of individual datasets: for a given number of ICs,
the mean covariance matrix spans a common subspace for all fMRI data. All individual fMRI
data were projected into this common subspace to reduce the individual fMRI data; and 3)
Probabilistic ICA on temporally concatenated data: all reduced individual data were temporally
concatenated and fed into the ICA algorithm(1). This procedure produces the final group-level
components. Specifically, it is formularized as the following:

XL Aq E
X§1 Aj Ky
X5 Az Es
X0, Ap Epp
X5 Ap Ex
X5, |=| An [SH] Ex
Xi2s Ais Ei s
X5 o5 Azs E s
| X555 | [ Asps | [ Esps | ©)

Here, XE} is the dimension-reduced fMRI data from the i-th scan of the j-th participant and
Aijj, Ejj are the relevant mixing matrix and the background noise matrix (1 <i<3, 1 <j<25);
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S includes the ICs shared by all 75 individual scans (i.e., group-level components). All
components are standardized into Z-score maps by dividing the relevant component weight by
the standard deviation of the background noise. Thus, the group-level component measures
not only the raw component but also a signal-to-noise ratio (sx=). Finally, a spatial mixture
model is applied to the Z-score map to infer whether the voxels were significantly modulated
by the associated timeseries (p > 0.5). In the current work, to examine large-scale spatial
networks, we fixed the number of components to 20 and performed a 20-component veLooic
(Smith et al., 2009). In addition, we also used wecooic to automatically estimate the number of
components, and conducted a second weconic USing the estimated number of components (42).
Of note, we based the TC-GICA analysis on the entire dataset from the 25 participants across
the three scans (a total of 75 scans). This approach was adopted to: 1) provide a realistic
equivalent of population-based studies that tend to base their group-level analyses on the large
dataset (controls and patients) rather than a single subset (Filippini et al., 2009; Rombouts et
al., 2009; Jafri et al., 2008; Damoiseaux et al., 2008; Wolf et al., 2008; Calhoun et al., 2004),
and 2) obtain the best possible ICA estimation, independent of any single session's noise.

2.6. Dual regression approach

In order to assess the TRT reliability of each group-level component, we used the dual
regression approach to build individual-level DR components (Filippini etal., 2009; Beckmann
et al., 2009). This method is based on the following GLM dual regression equations:

( _Qif A, (rDY _Abg @@ L. .
X;=S(AL) +(EB), Xy=AjSi+ED, 1<i<31<j<25 @

In equation (3), Xij represents the fMRI data from the i-th scan of the j-th participant. Asin a
previous study (Calhoun et al., 2004), the first part of equation (3) uses unthresholded group-
level components S as the spatial predictors of the individual fMRI volumes and results in the

regression matrix Aﬁ}) containing the relevant individual regression weights in the time domain
(i.e., timeseries). These timeseries were then used as the temporal predictors for the individual
fMRI timeseries in the second regression equation. The resulting regression matrix Sjj contains
regression weights for each of the components in the spatial domain, which serve as our
measure of functional connectivity (i.e., the individual-level DR components). These
individual-level DR components were subsequently used to evaluate the TRT reliability of the
group-level components.

Supplementary analyses examined whether or not TRT reliability is impacted by the addition
of variance normalization on the temporal predictors prior to the second-level regression.
Variance normalization is commonly used to remove the potential impact of amplitude
information on regression results, placing greater emphasis on the shape of the timeseries
instead. The comparison of TRT reliability between the two approaches is presented in the
supplementary materials: Part 2 - Impact of Several Factors on TRT Reliability.

2.7. Test-retest reliability

As in our prior work (Shehzad et al., 2009; Zuo et al., 2010), we used intra-class correlation
coefficients (ICC) to assess TRT reliability. Multiple variants of ICC exist, each with different
advantages and limitations (Shrout and Fleiss, 1979). The specific form used here is:

MS, - MS,
ICC,= .
MS,+(d - 1)MS, @

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zuo et al.

Page 8

Inthis equation, MSy, is the between-participants mean square and MSg is the error mean square.
The relevant statistical computation and interpretation can be found in Appendix A. Of note,
this ICCc calculation does not penalize for systematic errors (e.g., differences in ICs between
scans). Its usage is recommended for TRT situations in which systematic errors due to learning
effects or fatigue effects may occur (e.g., over the duration of the scan session), which are not
directly related to reliability (Rousson et al., 2002; Weir, 2005). We have also analyzed our
data using a form that does penalize for systematic error (the form as noted in Appendix A)
and supplied the results of TRT reliability analyses as Figure S4 (inter-session ICC, maps) and
Figure S5 (relevant rank ordering using ICC,).

In the present work, we assessed TRT reliability as follows: 1) TC-GICA was first carried out
across all participants and sessions (total 75 scans) to identify group-level components; 2) dual
regression was used to reconstruct the individual-level DR components; and 3) at each voxel,
intra-session TRT reliability was calculated as the ICC. between scan 2 and scan 3. Inter-
session TRT reliability was computed as the ICCc between scan 1 and the mean of scans 2 and
3. Given the close temporal proximity of scans 2 and 3 (45 minutes apart) relative to scan 1 (5
— 16 moths), we averaged scans 2 and 3 together for our estimation of the long-term TRT
reliability, rather than using a single scan from the second session (e.g., scan 2 or scan 3) (Zuo
etal., 2010). This decision was made in order to obtain the best possible estimate for the second
session data, and thus long-term TRT reliability.

2.8. Reproducibility of group-level components via individual-level ICA

We examined the extent to which group-level components detected via TC-GICA are
reproducible via individual-level ICA. First, given the number of ICs, we performed an
individual probabilistic ICA for each of the 75 scans (25 participants x 3 scans). Then, for each
of the group-level components, we identified the closest match in each of the 75 individual-
level ICA runs using a template matching procedure based upon the spatial correlation in
equation (5). We selected Pearson spatial correlation as our matching metric because of its
frequent usage in the literature (Garrity et al., 2007; Esposito et al., 2006; Harrison et al.,
2008).

N N " ..
) [lc‘k‘“f’ (n) - lc‘k'“f’] [IC'k’ (n) - 1C;! )

ij_ n=1

211/2

N - \? N .. ..
> [Ic‘k‘“" (n) - IC‘AT“P) > (Ic’kf (n) - IC’k’]

n=1 =1

(5)

In (5), r};j measures the degree to which a given individual-level component from the individual-
level ICAonthej-th (j=1,2, -, 25) participant's i-th (i = 1, 2, 3) scan (i.e., ICZ/), matches

the k-th template component ICfR,mp (k=1,---, P). Before we calculated the matching score, we
found the voxel with the maximum absolute Z-score, and multiplied the volume by the sign of
the Z-score. This ensures that the voxel with the greatest absolute Z-score is positive. The
matching score for each best-matched individual-level component can be used to measure the
reproducibility of corresponding group-level component at the individual-level. For an easy
understanding of such a template matching procedure, the process is illustrated in Figure 1B.

Of note, while using the template matching score for group-based analysis, a well-considered
study must perform a very careful visual inspection of the matching results (e.g. Harrison et
al., 2008). In the current study, in considering the issue of the stability of template matching,
we repeated our template-matching procedure using individual-level DR component as the
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template (i.e., DR template matching) for a given group-level IC, rather than the overall group-
level componentmap (i.e., TC-GICA template matching). The overlap ratio of individual-level
components between the two template matching strategies was used to measure the stability
of the template matching. Specifically, for each group-level component, the ratio of overlap
of all individual-level components across the two template matching strategies was computed
as the agreement between the two template matching procedures as defined in equation (6).

#{1 < m < 75:1C 1A (m) =ICPR (m)}
75 ®

Ri=

where IC; %" () is the m-th individual-level component matched by the k-th TC-GICA

template, and IC?R (m)is the m-th individual-level component matched by the k-th DR template
of the m-th scan. # is the number of agreements between the two template matching procedures.

2.9. Rank ordering group-level components

We used two ordering methods to rank the group-level components. First, for each group-level
component, a histogram of the ICC values within the group-level component mask (i.e., a
binary version of the thresholded group-level component) was used to demonstrate the ranges
of TRT reliability across different components. We then took the first most frequent ICC value
IcckY) and the second most frequent ICC value ICC2) from each ICC histogram. After this
feature selection step, each TRT reliability map can be simplified to a bivariate sample dataset
(acckd jcckywherek=1,2, - - -, P. These TRT reliability data then can be ranked using
amethod for sorting multivariate observations based on a minimal spanning tree (see Appendix
B). The second index for ranking group-level components was the mean Pearsons correlation
coefficient between the individual-level DR template and the best matched individual-level
component (i.e., the reproducibility).

2.10. Reliable algorithms for estimating the number of components

3. Results

For each individual resting state fMRI dataset, we applied five algorithms to estimate the
number of components automatically: Akaike information criterion (Akaike, 1973), Bayesian
information criterion (Schwarz, 1978), minimum description length (Rissanen, 1978),
probabilistic PCA (Minka, 2001) and entropy rate enhanced minimum description length (Li
etal., 2007). The first four methods were performed using wmecooic in FSL. The last method was
carried out in a Group ICA fMRI Toolbox (err: version 1.3f). Finally the ICC, was applied to
evaluate the TRT reliability of each method.

We carried out 20-component and 42-component TC-GICA. All TRT reliability and
reproducibility analyses were performed equally for both ICA decompositions. In this section,
we only present the results of the 20-component ICA decomposition. The findings of the 42-
component decomposition are summarized in the supplementary materials: Part 1 - Reliability
and Reproducibility for 42-Component MELODIC Analysis Combining Dual Regression.

3.1. Group-level components

Figure 2 depicts the 20 component maps generated by carrying out a lower order (number of
components fixed to 20) TC-GICA across all participants and sessions. The component

ordering for the figure was based on the relative ranking of the percentage of variance explained
by each component. The components observed were highly consistent with those previously
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reported (van de Ven et al., 2004;Beckmann et al., 2005;DeL uca et al., 2006;Damoiseaux et
al., 2006;Smith et al., 2009;Kiviniemi et al., 2009).

We sorted the 20 components into two broad classes - functionally relevant components (i.e.,
ICNs) and scanner/physiological artifactual components - based on visual inspection of each
component's spatial profile (e.g., biological plausibility, comparability to patterns previously
reported in ICA-based studies) and timeseries-based power spectrum profile (e.g., whether or
not signals < 0.1Hz were prominent). We noted 4 components that appeared to be associated
with artifactual sources: cerebrospinal fluid (IC01), white matter (IC03), head motion (1C05),
and large vessels (IC16). These four components accounted for 39.4% of the total variance in
the resting state fMRI data. Several functionally relevant components consistent with prior
reports were also revealed in our results. Two components (IC04 and IC15) are involved in
vision. 1C09 combines visual and motor regions including the occipital pole, superior parietal
cortex and precentral gyrus. IC13 includes brain regions such as the primary motor cortex and
primary and association auditory cortices. Several components include regions related to
various high-order brain functions: fronto-parietal networks corresponding to cognition and
language functions (IC07 and 1C19), medial-frontal including anterior cingulate and
paracingulate associated with executive control (IC08) and three “default mode” networks
(IC10, IC12 and IC14). We found six other components that are rarely reported or investigated
systematically corresponding to the cerebellum (IC11 and IC18), a motor-striatal component
(1C02), a ventromedial prefrontal component (IC17), a brainstem component (IC06), and a
temporal-lobe component (IC20). Of note, we found several components that exhibit anti-
correlation relationships between regions (IC04, 1C08, IC14 and IC15). In particular, the
executive and attentional network (IC08) and the “default mode” network (IC14) demonstrated
prominent anti-correlation relationships (Figure S1).

We detected the classic “default mode” network, although in the form of three components
that we interpret as sub-networks. The first is a medial-prefrontal subsystem (IC12), the second
is a posterior cingulate/precuneus subsystem (1C10), and the third is a temporal subsystem
(IC14). These three subsystems mainly overlap in the posterior cingulate cortex and medial
prefrontal cortex (Figure S2). As we discuss below, the existence of three overlapping but
differentiable sub-networks may account for some of the variations in the specific spatial
distributions or functional specialization of the “default mode” network reported across ICA
studies (Buckner et al., 2008; Harrison et al., 2008).

3.2. Test-retest reliability

For each group-level component, the voxel-wise intra-session (Figure 3) and inter-session
(Figure 4) TRT reliability maps were generated and summarized by calculating the first most
frequent ICC value (i.e., mode; see Figure 5) in their histograms (Figure S3). Consistent with
our predictions, most regions within noise components 1, 3 and 5 showed relatively low TRT
reliability (modal ICC: 0.2 — 0.45) both within and between sessions. Noise component 16
(large vessels) exhibited moderate reliability within-session (modal ICC: 0.525), but lower
between-session reliability (modal ICC: 0.375). This suggests that cardiac factors may be more
stable within-session than over the longer term.

Also consistent with our predictions, components commonly associated with sensory, motor,
higher order cognitive function and the “default-mode’ network all exhibited moderate to high
TRT reliability both within (modal ICC: 0.5 — 0.65) and between (modal ICC: 0.45 — 0.65)
sessions. The six remaining components showed relatively low reliability (modal within-
session ICC: 0.275 — 0.4; between-session ICC: 0.2 — 0.375), with the exception of a cerebellar
component (modal within-session ICC: 0.575; modal between-session ICC: 0.5).
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3.3. Reproducibility

Our reproducibility findings indicated marked variability across the 20 components with
respect to their reproducibility at the individual scan level, regardless of the template matching
approach employed (see Figure 6). Greatest reproducibility was noted for 1C04 (i.e., medial
visual network), whose mean matching score was 36% (for DR template matching) and 62%
(for TC-GICA template matching) greater than the mean of the remaining components’ mean
matching scores. The lowest reproducibility was noted for artifact components 1C01, IC03 and
IC20, as well as 1C18 (cerebellum). The mean match score between the template and individual-
level components was 34% greater across components when we employed the DR template
matching, rather than TC-GICA template matching (paired t-tests: p < 10~11). However, the
components selected by the two template matching approaches were frequently contradictory,
except for 1C04, which had the highest reproducibility. Figure 6 indicates the number of
disagreements on the matching results between the two template matching procedures. This
finding is particularly worrisome since the most commonly employed approach for template
matching in the ICA literature is based on an overall group template matching (Mantini et al.,
2009;Greicius et al., 2004,2007;Damoiseaux et al., 2008).

Finally, we used a random effects model to construct a group statistical map for each of the 20
group-level components, using the best matched individual-level components across the 75
scans, for each of the two template matching procedures. A relatively high degree of
concordance was noted between the group statistical maps produced using the two matching
procedures, as well as with the TC-GICA group-level components (see Figure 7). This suggests
that while template matching can produce numerous misidentifications of individual-level
components, these misidentifications do not appreciably affect the resulting group statistical
maps. This is a source of concern, as the concordance of group statistical maps can give the
erroneous impression that template matching is effective, when this is frequently not the case.

3.4. Ranking and ordering group-level components

Based on the histogram of the TRT reliability for each group-level component, we generated
a minimal spanning tree to rank components. Figure 8 shows the group-level components
ranked with the nodes denoting the minimal spanning tree. The fronto-parietal (IC19 and ICQ7),
visual (IC04), “default mode” (IC10 and 1C14), auditory-motor (IC13), executive control
(1C08) and one cerebellum component (IC11) demonstrated the highest ranks for both intra-
and inter-session TRT reliability. In contrast, the low reliability ranks corresponded to those
noise or artifact components associated with white matter, head motion, cerebrospinal fluid,
and presumed imaging artifacts. Additionally, the other cerebellum component (IC18), the
motor-striatal component (1C02), the ventromedial prefrontal component (1C17), and the
temporal-lobe component (1C20) all ranked low in TRT reliability. This lack of stability across
scan sessions might be related to unknown imaging artifacts or other sources of variability.

The group-level components were also ranked by their reproducibility. Again, functionally
relevant components (i.e., ICNs) ranked highly in reproducibility, while components
apparently dominated by physiological noise and scanner artifact were less reproducible
(Figure 9).

3.5. Estimated number of components

To assess component number estimation algorithms, we applied five estimation approaches to
approximate the number of components in the resting state fMRI signals. Figure 10 illustrates
the bar graphs of the numbers of components across the five algorithms. The probabilistic PCA-
based Laplacian algorithm produced a mean of around 20 components (Scanl: 23.0+12.3;
Scan2: 19.4+3.5; Scan3: 20.8+3.8). Built-in methods in veLooic such as Akaike information
criterion, Bayesian information criterion, and minimum description length produce smaller
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estimations than the probabilistic PCA method. The entropy rate enhanced minimum
description length method generates similar estimates to the minimum description length
method. The intra- and inter-session ICC values were calculated (Table S1). All five algorithms
exhibit high short-term reliability (ICC > 0.74) and moderate to poor long-term reliability.
Probabilistic PCA had the lowest intra-session and inter-session TRT reliability.

4. Discussion

The present work evaluated the reliability and reproducibility of TC-GICA-derived measures
of RSFC, yielding four main results. First, we found moderate-to-high short- and long-term
TRT reliability for RSFC measures derived by combining TC-GICA and dual regression.
Exceptions to this finding were limited to components corresponding to physiological- and
imaging-related artifacts. Second, we found that the degree to which components detected
using TC-GICA were reproducible at the level of a single-scan ICA varied across components
but not sessions, with the medial visual component having the highest reproducibility.
Importantly, our analyses revealed the potential for worrisome levels of inaccuracy in template
matching procedures. This inaccuracy potential appeared to affect most components, but could
easily be overlooked. Third, we found the reliability- and reproducibility-based rank orderings
of the TC-GICA components were highly consistent, with functionally relevant ICNs ranking
notably higher than noise components. Finally, we demonstrated that component estimation
algorithms tend to exhibit high intra-session test-retest reliability, but low to moderate inter-
session reliability, with poor concordance among algorithms.

4.1. The test-retest reliability and reproducibility

The greater reliability of ICNs compared to noise components provides support for the notion
that stable trait differences exist among individuals with respect to their ICN characteristics
(Shehzad et al., 2009; Buckner et al., 2009; Smith et al., 2009; Damoiseaux et al., 2006). This
statement is not inferring that there is no dynamic range for ICN characteristics — quite the
contrary. Numerous studies have documented the impact of factors such as task demands
(Esposito et al., 2006; Fransson, 2006; Hampson et al., 2006; Harrison et al., 2008; Kelly et
al., 2008; Yan et al., 2009), arousal (Boly et al., 2008; Fukunaga et al., 2006), and medication
status (Kelly et al., 2009b) on ICN properties. As such, we posit that ICNs in each individual
(whether it be the spatial extent or strength of functional connectivity) exist at equilibrium,
around which transient changes in their properties may occur in response to both external
influences and state-related factors. Of note, several papers have argued that development
(Fair et al., 2009; Kelly et al., 2009a) and learning (Albert et al., 2009) can produce long-term
changes in these properties. It is worth noting that the most reliable ICNs were those related
to fronto-parietal regions supporting attentional selection and encoding (IC19) (Milham et al.,
2001), primary visual perception (IC15), and “default mode” function (IC14) (Gusnard et al.,
2001). The stability of these ICNs may reflect the sustained reliance of the brain on these
networks for moment-to-moment functions. Alternatively, it may suggest these networks have
a more consistent response to the “resting state” fMRI environment.

Our reproducibility analyses raised significant concern about the usage of individual scan based
ICA approaches and template matching. The two approaches to identifying group-level
components at the individual scan-level exhibited a high degree of discordance with respect
to the component selected as the best fit for an individual. Yet, across all scans, each of the
template matching approaches managed to capture the gestalt of the targeted group-level
component. This should caution against the suggested use of matching scores as a metric of
ICN integrity, and consequently, as potentially promising clinical biomarkers (Greicius et al.,
2004). In this regard, dual regression based approaches clearly engender a higher degree of
confidence.
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4.2. Sub-networks of the “default mode” network

In the present work, the “default mode” network was divided into three sub-networks: the
medial prefrontal sub-network, the posterior cingulate/precuneus sub-network and the medial
temporal lobe sub-network. Each of the three sub-networks exhibited high test-retest reliability.
This component-splitting phenomenon previously was thought to be a result of overestimating
the model order, but recently was reported to reflect functional segregation or hierarchy within
the “default mode” network (Buckner et al., 2008; Kiviniemi et al., 2009; Smith et al., 2009;
Uddin et al., 2009; Harrison et al., 2008). Intriguingly, the three sub-networks we observed are
well matched with the anatomical and functional theory of the “default mode” network
proposed by Buckner et al. (2008). For example, the three sub-networks overlapped in the
posterior cingulate cortex and medial prefrontal cortex, which are posited to be critical to
interactions between the medial prefrontal subsystem and the medial temporal lobe subsystem
(Buckner et al., 2008).

4.3. Anti-correlations in ICA-derived ICNs

Our TC-GICA analyses revealed multiple ICNs that were accompanied by anti-phasic or “anti-
correlated” functional networks. Since Fox et al. (2005) systematically demonstrated the anti-
correlation between the “default mode” network and task-positive network, the anti-correlation
has been suggested to reflect either a competitive mechanism or segregation of processing
between functional systems (Fox et al., 2005; Kelly et al., 2008). Recently, concerns have
arisen regarding the potential artifactual nature of findings of negative connectivity, resulting
from global corrections procedures commonly employed in conjunction with seed-based
approaches (Murphy et al., 2009; Fox et al., 2009; Weissenbacher et al., 2009). Here, TC-GICA
generated a pattern of negative connectivity between the “default mode” network and an
anterior cingulate-based network involving regions supporting executive control and
attentional function (Long et al., 2008). Several recent theoretical models support the existence
of anti-correlations (Honey et al., 2007; Steyn-Ross et al., 2009; Deco et al., 2009), suggesting
that negative connectivity may be a true organizational characteristic of the resting state brain,
with neural origins (Popa et al., 2009). Of note, our results suggest less prominent negative
connectivity between the ”default mode” network and the dorsal visual attention stream (1C09),
than prior work using seed-based approaches (Fox et al., 2006). It may be beneficial for future
studies to investigate such inconsistencies.

4.4, Limitations and future directions

Despite its successes, the present work has several limitations worth noting. First, usage of
random initial values is a well-documented source of variability for ICA. Recent work by
Himberg et al. (2004) has suggested that a potential solution to this problem is to carry out a
series of ICA analyses using different initial values, and then combining the results via
hierarchical clustering. The focus of the present work was on assessing the reliability and
reproducibility for a single ICA run, rather than the aggregate result. In part, this decision was
made to reflect the more common approach currently employed in the literature. However,
future work may directly quantify the impact of random initial values on reliability and
reproducibility, and in addition to look at how solutions such as that of Himberg et al.

(2004) mediate it.

Second, our examination of TRT reliability focused on the combination of TC-GICA and dual
regression, though does not speak to either step individually. In the first stage, dual regression
can be applied to any template brain map, not just those derived from ICA. As such, future
work may focus on the dual regression step specifically, using template images derived by
alternative approaches, such as those recently developed by Smith et al. (2009) using the
BrainMap database. Similarly, in the second stage, dual regression can use step-wise regression
or univariate regression, not only multiple regression. Future work may examine the impact of
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different second-level regression strategies on TRT reliability. Finally, it would be worthwhile
to explore the effects of ICA analyses using alternative approaches for obtaining individual
RSFC maps following group analyses (e.g., PCA back-projection) (Calhoun et al., 2001). The
test-retest data used in this study are publicly available via
http://www.nitrc.org/projects/nyu_trt to facilitate the above or other examinations in future.

Third, the present work relied upon the template matching using a commonly employed
measure of goodness of fit the spatial correlation coefficient. Unfortunately, to date, there is
no standard approach to determining what an adequate match score is, and misclassification
using this template matching approach is clearly possible for components with a high degree
of similarity (e.g., “default mode” network components: 1C10, IC12 and IC14 in Figure S2).
In fact, our results actually showed that the template matching procedure could be highly
affected by the template selection strategy. Alternative strategies exist to calculate the template
matching fitness (Greicius et al., 2004, 2007), though they likely face the same issues we
demonstrated. Future work may focus on the determination of an optimal matching procedure.

4.5. Conclusions

In summary, temporal concatenation group ICA (TC-GICA), combined with dual regression
isan effective approach for exploratory analyses of resting state fMRI data, exhibiting moderate
to high test-retest reliability for intrinsic connectivity networks. Additionally, while many
components detected via TC-GICA are reproducible at the individual scan level, our findings
raise cautions with respect to group-based analyses that rely on individual scan-based ICA
approaches due to the challenges of component matching.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A. Computation of Intraclass Correlation Coefficients

To calculate the TRT reliability of RSFC for each voxel in each group-level component, for
each voxel, we consider a random sample of n subjects with d repeated measurements of a
continuous variable Y characterizing the RSFC. We denote Yjj as the j-th measurement made
on the i-th subject (fori=1,---,nandj=1,---,d). Inthe current situation, Yj; denotes the
RSFC of a component from the i-th participant's j-th measuring occasions. We apply a voxel-
wise single-factor ANOVA on each component as the following decomposition of Yij:

Yij=pu+pi+tj+e;;, 1<i<n, 1<j<d 1)

where y is a fixed parameter and p;, tj, €jj are independent random effects normally distributed

with mean 0 and variances 0',2,, o?and 2. The term p; is the participant effect, whereas tj is the
systematic error (i.e., the scanning occasion effect) and ejj is the measurement error. One way
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to assess reliability of variable Y may use the concept of intraclass correlation (ICC) defined
as
2

9

2 2, 42"

Pu=
Opt0;+0 (8)

Obviously, the ICC has the desired property to characterize the test-retest reliability, i.e.,

becoming smaller when either o or o2 become larger. Also, if one does not consider systematic
error when assessing reliability, one may use the following equation:
2
(o

Pe="7F >
(J'[)+(Te (9)

Solving the ANOVA model (7), we can estimate the sample version of p,, and p. Briefly, from
data Yjj, we compute three sums of squares:

n /- ~-\2
$S,= d3(v:-7.)
lj]l - )
$S= n3(v,-7.)

S
Il

The expectations of MS, = SSp/(n — 1), MS; = SS¢/(d — 1) and MSg = SS¢/((n — 1 )(d — 1)) are

do-f,+o-3, no?+a2 and o2, respectively. We therefore obtain unbiased estimates of o7, o7 and

olas
—~ MS,-MS.
Ty, =—13
6:[2 :MS,;MSc
a2 =MS,.
Then an estimate of p, is
)
o MS, - MS
ICC,=——= P °

T+ +02 “MS,+ (d — DMS.+ (d/n) (MS, - MS,)

(10)

while an estimate of p. is

)
10C=t = MO =M
2452 MS,+(d— DMS,

(11)
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B. Ranking TRT Reliability Maps Using Minimal Spanning Trees

Using the bivariate feature (ICC?"I)’ ICC(ck'z)), k=1,2, -, Pofeach ICC histogram with 80
bins, we can generate a fully connected graph G = (V, E) with P nodes. A minimal spanning
tree (MST) of the graph G is a tree subgraph that contains all nodes and whose edges have the
least total distance. We use the Kruskal algorithm for formating the MST of G.

Algorithm 1 (Kruskal (1956)). Formation of a minimal spanning tree T from a connected graph
with P nodes and with edge distances in E:

Set T = 0 (the empty set), and k = 0.
Choose the edge e from E with the shortest distance.

Remove e from E.

w N P O

If e does not create acycle in T, thenaddeto Tand setk =k + 1
4 ifk <P -1, gotostep 1.

Based on the MST of G, we rank these nodes (i.e., components in the current study) by defining
a starting node at an endpoint of a tree diameter and then proceed through the tree in such a
way as to visit any shallow subtrees at a given node before proceeding to the deeper subtrees.
In our situation, we choose to begin on the right (i.e., large TRT reliability) of the tree (Figure
8) and use the ordering rule to get the final ordering for these group-level components.

References

Akaike, H. Information theory and an extension of the maximum likelihood principle.. Second
International Symposium on Information Theory; 1973. p. 267-281.

Albert NB, Robertson EM, Miall RC. The resting human brain and motor learning. Curr Biol 2009;19
(12):1023-7. [PubMed: 19427210]

Andersson, JLR.; Jenkinson, M.; Smith, S. Non-linear registration, aka spatial normalisation. 2007. Tech.
Rep. TR0O7JA2, Oxford Centre for Functional MRI of the Brain.

Beckmann, C.; Mackay, C.; Filippini, N.; Smith, S. Group comparison of resting-state fmri data using
multi-subject ica and dual regression.. 15th Annual Meeting of Organization for Human Brain
Mapping; 2009. poster 441 SU-AM

Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using
independent component analysis. Philos Trans R Soc Lond, B, Biol Sci 2005;360(1457):1001-13.
[PubMed: 16087444]

Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic
resonance imaging. IEEE Transactions on Medical Imaging 2004;23(2):137-52. [PubMed: 14964560]

Biswal B, Yetkin F, Haughton V, Hyde J. Functional connectivity in the motor cortex of resting human
brain using echo-planar mri. Magn. Reson. Med 1995;34(4):537-541. [PubMed: 8524021]

Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R,
Maquet P, Laureys S. Intrinsic brain activity in altered states of consciousness: how conscious is the
default mode of brain function? Ann N 'Y Acad Sci 2008;1129:119-29. [PubMed: 18591474]

Broyd S, Demanuele C, Debener S, Helps S, James C, Sonuga-Barke E. Default-mode brain dysfunction
in mental disorders: A systematic review. Neuroscience & Biobehav. Rev 2009;33(3):279-96.

Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and
relevance to disease. Ann N Y Acad Sci 2008;1124:1-38. [PubMed: 18400922]

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA,
Johnson KA. Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of
stability, and relation to alzheimer's disease. Journal of Neuroscience 2009;29(6):1860-1873.
[PubMed: 19211893]

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zuo et al.

Page 17

Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional
mri data using independent component analysis. Hum. Brain Mapp 2001;14(3):140-51. [PubMed:
11559959]

Calhoun VD, Pekar JJ, Pearlson GD. Alcohol intoxication effects on simulated driving: exploring alcohol-
dose effects on brain activation using functional MRI. Neuropsychopharmacology 2004;29(11):
2097-17. [PubMed: 15316570]

Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging,
genetic, and ERP data. Neuroimage 2009;45(1 Suppl):S163-72. [PubMed: 19059344]

Chen S, Ross T, Zhan W, Myers C, Chuang K, Heishman S, Stein E, Yang Y. Group independent
component analysis reveals consistent resting-state networks across multiple sessions. Brain
Research 2008;1239(6):141-151. [PubMed: 18789314]

Cordes D, Nandy R. Independent component analysis in the presence of noise in fmri. Magnetic
Resonance Imaging 2007;25(9):1237-48. [PubMed: 17509787]

Damoiseaux JS, Beckmann CF, Arigita EJS, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts
SARB. Reduced resting-state brain activity in the “default network’ in normal aging. Cereb Cortex
2008;18(8):1856—64. [PubMed: 18063564]

Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF.
Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006;103(37):
13848-53. [PubMed: 16945915]

Deco G, Jirsa V, Mclintosh AR, Sporns O, Kétter R. Key role of coupling, delay, and noise in resting
brain fluctuations. Proc Natl Acad Sci USA 2006;106(25):10302—7. [PubMed: 19497858]

DeLuca M, Beckmann CF, Stefano ND, Matthews PM, Smith SM. fmri resting state networks define
distinct modes of long-distance interactions in the human brain. Neurolmage 2006;29(4):1359-67.
[PubMed: 16260155]

Di Martino A, Scheres A, Margulies DS, Kelly AMC, Uddin LQ, Shehzad Z, Biswal B, Walters JR,
Castellanos FX, Milham MP. Functional connectivity of human striatum: a resting state fmri study.
Cereb Cortex 2008;18(12):2735-47. [PubMed: 18400794]

Di Martino A, Shehzad Z, Kelly C, Roy AK, Gee DG, Uddin LQ, Gotimer K, Klein DF, Castellanos FX,
Milham MP. Relationship between cingulo-insular functional connectivity and autistic traits in
neurotypical adults. The Am J of Psychiatry 2009;166(8):891-9.

Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R,
Salle FD. Independent component model of the default-mode brain function: Assessing the impact
of active thinking. Brain Res Bull 2006;70(4-6):263-9. [PubMed: 17027761]

Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE.
Functional brain networks develop from a “local to distributed” organization. PLoS Computational
Biology 2009;5(5):e1000381. [PubMed: 19412534]

Filippini N, Macintosh B, Hough M, Goodwin G, Frisoni G, Smith S, Matthews P, Beckmann C, Mackay
C. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad
Sci USA 2009;106(17):7209-7214. [PubMed: 19357304]

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic
resonance imaging. Nat Rev Neurosci 2007;8(9):700-11. [PubMed: 17704812]

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes
human dorsal and ventral attention systems. Proc Natl Acad Sci USA 2006;103(26):10046-51.
[PubMed: 16788060]

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME. The human brain is intrinsically
organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005;102(27):
9673-8. [PubMed: 15976020]

Fox MD, Snyder AZ, Vincent JL, Raichle ME. Intrinsic fluctuations within cortical systems account for
intertrial variability in human behavior. Neuron 2007;56(1):171-84. [PubMed: 17920023]

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state
brain networks. Journal of Neurophysiology 2009:1-47.

Franco A, Pritchard A, Calhoun V, Mayer A. Interrater and inter-method reliability of default mode
network selection. Hum. Brain Mapp 2009;30(7):2293-303. [PubMed: 19206103]

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zuo et al.

Page 18

Fransson P. How default is the default mode of brain function? further evidence from intrinsic bold signal
fluctuations. Neuropsychologia Jan;2006 44(14):2836-45. [PubMed: 16879844]

Fukunaga M, Horovitz S, Vangelderen P, Dezwart J, Jansma J, Ikonomidou V, Chu R, Deckers R,
Leopold D, Duyn J. Large-amplitude, spatially correlated fluctuations in bold fmri signals during
extended rest and early sleep stages. Magnetic Resonance Imaging 2006;24(8):979-992. [PubMed:
16997067]

Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode”
functional connectivity in schizophrenia. American journal of psychiatry 2007;164(3):450-7.
[PubMed: 17329470]

Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol
2008;21(4):424-30. [PubMed: 18607202]

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF.
Resting-state functional connectivity in major depression: abnormally increased contributions from
subgenual cingulate cortex and thalamus. Biological Psychiatry 2007;62(5):429-37. [PubMed:
17210143]

Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes alzheimer's
disease from healthy aging: evidence from functional mri. Proc Natl Acad Sci USA 2004;101(13):
4637-42. [PubMed: 15070770]

Guo Y, Pagnoni G. A unified framework for group independent component analysis for multi-subject
fmri data. Neurolmage 2008;42(3):1078-93. [PubMed: 18650105]

Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting
human brain. Nat Rev Neurosci 2001;2(10):685-94. [PubMed: 11584306]

Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working
memory performance. Journal of Neuroscience 2006;26(51):13338-43. [PubMed: 17182784]

Harrison BJ, Pujol J, L6pez-Sola M, Hernandez-Ribas R, Deus J, Ortiz H, Soriano-Mas C, Yiicel M,
Pantelis C, Cardoner N. Consistency and functional specialization in the default mode brain network.
Proc Natl Acad Sci USA 2008;105(28):9781-6. [PubMed: 18621692]

Himberg J, Hyvérinen A, Esposito F. Validating the independent components of neuroimaging time series
via clustering and visualization. Neurolmage 2004;22(3):1214-22. [PubMed: 15219593]

Honey CJ, Kétter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional
connectivity on multiple time scales. Proc Natl Acad Sci USA 2007;104(24):10240-5. [PubMed:
17548818]

Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks
2000;13(4-5):411-430. [PubMed: 10946390]

Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among
spatially independent resting-state components in schizophrenia. Neurolmage 2008;39(4):1666-81.
[PubMed: 18082428]

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neurolmage 2002;17(2):825-41. [PubMed:
12377157]

Kelly AC, Martino AD, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham
MP. Development of anterior cingulate functional connectivity from late childhood to early
adulthood. Cerebral Cortex 2009a;19(3):640-653. [PubMed: 18653667]

Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain
networks mediates behavioral variability. Neurolmage 2008;39(1):527-37. [PubMed: 17919929]

Kelly C, de Zubicaray G, Martino AD, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP,
McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a
double-blind placebo-controlled study. Journal of Neuroscience 2009b;29(22):7364—78. [PubMed:
19494158]

Kiviniemi V. Independent component analysis of nondeterministic fmri signal sources. Neurolmage
2003;19(2):253-260. [PubMed: 12814576]

Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M,
Zang Y, Tervonen O. Functional segmentation of the brain cortex using high model order group pica.
Hum. Brain Mapp 2009;30(12):3865-86. [PubMed: 19507160]

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zuo et al.

Page 19

Kruskal JB. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings
of the American Mathematical Society 1956;7(1):48-50.

Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional magnetic
resonance imaging data. Hum. Brain Mapp 2007;28(11):1251-66. [PubMed: 17274023]

Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang TZ, Yang H, Gong QY, Wang L, Li
KC, Xie S, Zang YF. Default mode network as revealed with multiple methods for resting-state
functional mri analysis. Journal of Neuroscience Methods 2008;171(2):349-55. [PubMed:
18486233]

Mantini D, Caulo M, Ferretti A, Romani GL, Tartaro A. Noxious Somatosensory Stimulation A ects the
Default Mode of Brain Function: Evidence from Functional MR Imaging. Radiology 2009;253(3):
797-804. [PubMed: 19789220]

Margulies DS, Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the functional
connectivity of anterior cingulate cortex. Neurolmage 2007;37(2):579-88. [PubMed: 17604651]

Meindl T, Teipel S, EImouden R, Mueller S, Koch W, Dietrich O, Coates U, Reiser M, Glaser C. Test-
retest reproducibility of the default-mode network in healthy individuals. Hum. Brain Mapp. 2009
Electronic publication ahead of print.

Milham MP, Banich MT, Webb A, Barad V, Cohen NJ, Wszalek T, Kramer AF. The relative involvement
of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain
research Cognitive brain research 2001;12(3):467-73. [PubMed: 11689307]

Minka, T. Automatic choice of dimensionality for PCA. Massachusetts Inst. Technol.; Cambridge: 2000.
Tech. Rep. 514

Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Miinte T. Changes of resting state brain
networks in amyotrophic lateral sclerosis. Exp Neurol 2009;217(1):147-153. [PubMed: 19416664]

Murphy K, Birn R, Handwerker D, Jones T, Bandettini P. The impact of global signal regression on
resting state correlations: Are anti-correlated networks introduced? Neurolmage 2009;44(3):893-
905. [PubMed: 18976716]

Nioche C, Cabanis EA, Habas C. Functional connectivity of the human red nucleus in the brain resting
state at 3t. AJINR American journal of neuroradiology 2009;30(2):396-403. [PubMed: 19022864]

Perlbarg V, Bellec P, Anton J-L, Pélégrini-Issac M, Doyon J, Benali H. CORSICA: correction of
structured noise in fmri by automatic identification of ica components. Magnetic Resonance Imaging
2007;25(1):35-46. [PubMed: 17222713]

Popa D, Popescu AT, Paré D. Contrasting activity profile of two distributed cortical networks as a function
of attentional demands. J Neurosci 2009;29(4):1191-201. [PubMed: 19176827]

Rissanen J. Modeling by shortest data description. Automatica 1978;14(5):465-471.

Rombouts SARB, Damoiseaux JS, Goekoop R, Barkhof F, Scheltens P, Smith SM, Beckmann CF.
Model-free group analysis shows altered bold fmri networks in dementia. Hum. Brain Mapp 2009;30
(1):256-66. [PubMed: 18041738]

Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous
measurements. Statist. Med 2002;21(22):3431-46.

Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX,
Milham MP. Functional connectivity of the human amygdala using resting state fmri. Neurolmage
2009;45(2):614-626. [PubMed: 19110061]

Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978;6(2):461-464.

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-
scale human brain networks. Neuron 2009;62(1):42-52. [PubMed: 19376066]

Shehzad Z, Kelly A, Reiss P, Gee D, Gotimer K, Uddin L, Lee S, Margulies D, Roy A, Biswal B, Petkova
E, Castellanos F, Milham M. The resting brain: Unconstrained yet reliable. Cereb Cortex 2009;19
(10):2209-29. [PubMed: 19221144]

Shrout P, Fleiss J. Intraclass correlations - uses in assessing rater reliability. Psychol Bull 1979;86(2):
420-428. [PubMed: 18839484]

Smith S, Fox P, Miller K, Glahn D, Fox P, Mackay C, Filippini N, Watkins K, Toro R, Laird A, Beckmann
C. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad
Sci USA 2009;106(31):13040-5. [PubMed: 19620724]

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zuo et al.

Page 20

Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. Modeling brain activation patterns for the
default and cognitive states. Neurolmage 2009;45(2):298-311. [PubMed: 19121401]

Stone, JV.; Porrill, J.; Buchel, C.; Friston, K. Spatial, temporal, and spatiotemporal independent
component analysis of fMRI data.. Proceedings of the 18th Leeds Statistical Research Workshop on
Spatial-Temporal Modeling and Its Applications; 1999. p. 2328

Thomas CG, Harshman RA, Menon RS. Noise reduction in bold-based fmri using component analysis.
Neurolmage 2002;17(3):1521-37. [PubMed: 12414291]

Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. Automatic independent component
labeling for artifact removal in fmri. Neurolmage 2008;39(3):1227-45. [PubMed: 18042495]

Uddin LQ, Kelly AC, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode
network components: Correlation, anticorrelation, and causality. Hum. Brain Mapp Feb;2009 30(2):
625-637. [PubMed: 18219617]

van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ. Functional connectivity as revealed
by spatial independent component analysis of fmri measurements during rest. Hum. Brain Mapp
2004;22(3):165-78. [PubMed: 15195284]

Wang Z, Peterson BS. Partner-matching for the automated identification of reproducible ica components
from fmri datasets: Algorithm and validatione. Hum. Brain Mapp 2008;29(8):875-893. [PubMed:
18058813]

Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. Correlations and
anticorrelations in resting-state functional connectivity mri: a quantitative comparison of
preprocessing strategies. Neurolmage 2009;47(4):1408-16. [PubMed: 19442749]

Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J
Strength Cond Res 2005;19(1):231-40. [PubMed: 15705040]

Wolf RC, Sambataro F, Vasic N, Schonfeldt-Lecuona C, Ecker D, Landwehrmeyer B. Aberrant
connectivity of lateral prefrontal networks in presymptomatic huntington's disease. Exp Neurol
2008;213(1):137-44. [PubMed: 18588876]

Yan C, Liu D, He Y, Zou Q, Zhu C, Zuo X, Long X, Zang Y. Spontaneous brain activity in the default
mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS ONE
2009;4(5):e5743. [PubMed: 19492040]

Yang Z, LaConte S, Weng X, Hu X. Ranking and averaging independent component analysis by
reproducibility (RAICAR). Hum. Brain Mapp 2008;29(6):711-25. [PubMed: 17598162]

Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME. Intrinsic functional relations
between human cerebral cortex and thalamus. Journal of Neurophysiology 2008;100(4):1740-1748.
[PubMed: 18701759]

Zhang Z, Lu G, Zhong Y, Tan Q, Yang Z, Liao W, Chen Z, Shi J, Liu Y. Impaired attention network in
temporal lobe epilepsy: A resting fmri study. Neuroscience Letters 2009;458(3):97-101. [PubMed:
19393717]

Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham
MP. The oscillating brain: Complex and reliable. Neuroimage 2010;49(2):1432-1445. [PubMed:
19782143]

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 21

A)

U]
TC-GICA Template Matching
Best-matched IC

- .
o,
/ -
=
\
Eq.(5)

Best-matched IC

DR Template Matching

Ranking Processing

Figure 1. Overall Analytic Strategy

A) All individual datasets were analyzed by two ICA procedures: (I) temporal concatenation
group ICA (TC-GICA) and (I1) individual-level ICA. TC-GICA first generates the group-level
components, and then reconstructs the individual-level independent components (1Cs) using a
dual regression (DR) approach (i.e., individual-level DR components) for the test-retest
reliability analysis. Individual-level ICA produces the individual-level components for all
individual datasets and combines a template matching procedure to examine the
reproducibility. Measures of reliability and reproducibility are used to rank-order the group-
level components. B) The template matching procedure uses two template strategies: group-
level components or individual-level DR components. Given a group-level component of
interests, for each of the three scans of a participant, the best-matched individual-level
component is selected from among their 20 individual-level components based on the matching
process outlined above (shown here with only 1 scan dataset from a participant). Firstly, across
all brain voxels, the spatial correlation coefficient of Z-score between an individual-level
component and a template component is calculated using Eq (5). The template component can
be the group-level component (i.e., TC-GICA template matching) or the corresponding
individual-level DR component (i.e., DR template matching). Secondly, the component with
the highest matching score is then selected as the best-matched individual-level component.
The final matched individual-level components from TC-GICA template matching and DR
template matching could be the same or different.
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1) The sagittal, coronal and axial views of the 20 group-level independent components (ICs) are
displayed according to radiological convention (left is right).

2) The peak coordinates (x,y,z) of each IC are shown in parentheses (MNI152 standard space).

3) The ICs are ranked by the percentage of variance explained, displayed in the lower right
corner of each panel.

Spatial Mixture Model

Figure 2. Group-level Components Revealed by the Temporal Concatenation Group Independent
Component Analysis

The saggital, coronal and axial views of the 20 group-level independent components (I1Cs)
identified using TC-GICA are displayed according to radiological convention (left is right).
The Z-statistic map relating to each IC is thresholded by a spatial mixture model (p > 0.5) and
a cluster size (> 80 mm3). The peak coordinates (X, y, z) of each IC are shown in parentheses
(MNI152 standard space).
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1) The sagittal, coronal and axial views of the 20 group-level independent components (ICs) are
displayed according to radiological convention (left is right).

2) The peak coordinates (x,y,z) of each IC are shown in parentheses (MNI152 standard space).

3) The ICs are ranked by the percentage of variance explained, displayed in the lower right
corner of each panel.

Figure 3. Short-term Intra-session Test-Retest Reliability Maps for Group-level Components
This figure depicts the voxel-wise short-term or intra-session (i.e., < 45 min) reliability of ICA-
derived resting state functional connectivity. The saggital, coronal and axial views of the
reliability maps for each group-level component are displayed in radiological convention. The
ICC map for each IC is thresholded at ICC > 0.5, with a minimum cluster size of 80 mm3. The
peak coordinates (X, y, z) of each IC are shown in parentheses (MNI152 standard space).
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1) The sagittal, coronal and axial views of the 20 group-level independent components (ICs) are
displayed according to radiological convention (left is right).

2) The peak coordinates (x,y,z) of each IC are shown in parentheses (MNI152 standard space).

3) The ICs are ranked by the percentage of variance explained, displayed in the lower right
corner of each panel.

Inter-session ICC

Figure 4. Long-term Inter-session Test-Retest Reliability Maps for Group-level Components
This figure depicts the voxel-wise long-term or inter-session (i.e., > 5 months) reliability of
ICA-derived resting state functional connectivity. The saggital, coronal and axial views of the
reliability maps for each group-level component are displayed in radiological convention. The
ICC map for each IC is thresholded at ICC > 0.5, with a minimum cluster size of 80 mm3. The
peak coordinates (X, y, z) of each IC are shown in parentheses (MNI152 standard space). The
ICs are ranked by the percentage of variances explained; displayed in the lower right corner
of each panel.
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Figure 5. The Most Frequent Values in the ICC Histogram for Each Group-level Component
This scatter plot depicts the most frequent values appearing in both inter-session (x—axis) and
intra-session (y—axis) ICC histograms for each group-level independent component (red dots).
The histogram consists of 40 bins extending from 0 to 1. Two thin black lines are drawn to

display the critical value (ICC = 0.5) for both intra-session and inter-session test-retest

reliability, and the blue dash line characterizes the positions with equal intra- and inter-session

reliability.
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Figure 6. Individual Best Matching Scores As a Reproducibility Measure

This figure depicts the individual reproducibility measurements for each group-level
component (IC). All individual best matching scores are depicted as an error bar graph for each
group-level component. Two template strategies were adopted for calculating the individual
best matching scores: individual dual-regression derived templates (red) and group-level
temporal concatenation group ICA (TC-GICA) derived templates (blue). Meanwhile, for each
group-level IC, the consistency of matched results between the two template strategies is
calculated as the spatial correlation coefficient (black) between individual dual-regression
matched results and individual TC-GICA matched results. The numbers below these black
points (i.e., around the line y = 0) represent the number of disagreements between the two
template matching strategies.
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Figure 7. Consistency of Group-level Maps Based on Template Matching Results

This figure demonstrates the consistency of template matching results from two different
template strategies at the group-level: (1) the spatial correlation between a TC-GICA derived
group-level component and a group z-statistic map derived by a random effect group analysis
on individual dual-regression template-matched components (red squares), and (2) the spatial
correlation between a group-level component and a group z-statistic map derived by a random
effect group analysis on individual TC-GICA template-matched components (blue squares).
Also shown is the spatial correlation between the two group z-statistic maps based on the
individual components using the two template strategies (orange squares).
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Figure 8. Ranking and Ordering the Test-Retest Reliability Maps Using Their Bivariate Minimal
Spanning Tree Representations

For both intra-session (left) and inter-session (right) reliability, based on the bivariate feature
(i.e., red circles) of each ICC histogram with 80 bins, a fully connected graph can be built. A
minimal spanning tree (MST) of this graph is a tree sub-graph that contains all nodes and whose
edges have the least total distance. The components are ranked by walking along the MST of
the corresponding graph constrained with a rule. The rule defines a starting node at an endpoint
of a tree diameter and then to proceed through the tree in such a way as to visit any shallow
sub-trees at a given node before proceeding to the deeper sub-trees. In our situation, we choose
to begin on the right (i.e., large test-retest reliability) of the MST and use the ordering rule to
get the final ranks for these group-level components.
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Figure 9. Test-Retest Reliability Ranks and Reproducibility Ranks of Each Group-level

Component

These two scatter plots plot the reliability and reproducibility ranks for each group-level
component. Left panel: intra-session reliability ranks versus reproducibility ranks; Right panel:

inter-session reliability ranks versus reproducibility ranks.
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Figure 10. Number of Components Estimated by Five Automatic Estimation Algorithms across
Three Scans

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; MDL: Minimum
Description Length; er-MDL: Entropy Rate enhanced Minimum Description Length; PPCA:
Probabilistic Principal Component Analysis.
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