Robert A. Farley

Affiliated Faculty

Professor Physiology and Biophysics, Biochemistry and Molecular Biology

Robert A. Farley

Research Topics

  • Transport protein biophysics
  • Na, K-ATPase
  • Neurotransmitter transport
  • Peptide transport
  • Ion Channels
  • Protein structure
  • Membrane proteins
  • Molecular dynamics simulations

Research Images

Research Overview

The primary interest of our lab is to understand the mechanisms that cells have developed to move ions and small molecules across cell membranes. Ion gradients of sodium and potassium underlie all electrical activity in cells, and in one project we are concerned with the structure and mechanism of Na,K-ATPase, the protein that catalyzes the active transport of these ions and establishes and maintains their transmembrane electrochemical potential gradients. In another line of investigation, we are studying the mechanisms of serotonin and GABA transport by neuronal serotonin and GABA transporters. These transporters are members of a class of proteins that couple neurotransmitter uptake to the transport of sodium ions, and often other ions as well, and we are working to understand how interactions among these different substrates and the proteins lead to their transport. The serotonin transporter, in particular, also exhibits characteristics of both an alternating access transporter and an ion channel, and we are interested to know how this observation can be explained. A third area of interest in our lab is the transport of small peptides across the intestinal epithelium. The transporter for these peptides, PepT1, recognizes and transports all combinations of di- and tri-peptides, but does not transport individual amino acids. Because PepT1 also transports certain peptide-drug conjugates and some small antibiotics, it is an attractive target for prodrug development designed to facilitate the convenient oral delivery of pharmaceuticals.

Our work on the structure and mechanism of each of these transporters has historically used techniques of membrane protein biochemistry, multiple types of spectroscopy, electrophysiology, and molecular biology. As more atomic level structures of transport proteins have become available, we have moved primarily to using molecular dynamics simulations of these transporters as a tool to elucidate dynamic mechanistic details that are defined by and constrained by the protein structures, and which cannot be captured by static protein structures.

Contact Information

Mailing Address
Office Location MMR 250
Office Phone (323) 442-1240
Lab Location BMT 320
Lab Phone (323) 442-1241
Fax (323) 442-2259
Office Location MMR 250



  • B.A., Hofstra University, 1970.
  • Ph.D., University of Rochester, 1975.

Selected Publications

View a complete PubMed searchView a complete Google Scholar search
  • Ngo V, Stefanovski D, Haas S, and Farley RA (2014) Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel. PLOS 0NE 9(1):e86079.
  • Farley RA and Sampath AK (2011) Perspectives on Information Coding in Mammalian Sensory Physiology. J. Gen. Physiol. 138: 281-282.
  • Nagy AK, Kane DJ, Tran CM, Farley, RA, and Faller LD. (2005) Evidence calcium pump binds magnesium before inorganic phosphate. J. Biol. Chem. 280: 7435-7443. PubMed
  • Xu G, Kane DJ, Faller LD, and Farley RA. (2004) The role of loop 6/7 in folding and functional performance of Na,K-ATPase. J. Biol. Chem. 279: 45594-45602. PubMed
  • Li M, Farley RA, and Lester HA. (2002) Voltage-dependent transient currents of human and rat 5-HT transporters (SERT) are blocked by HEPES and ion channel ligands. FEBS Lett. 513: 247-252. PubMed
  • Muller-Ehmsen J, Juvvadi P, Thompson CB, Tumyan L, Croyle M, Lingrel JB, Schwinger RH, McDonough AA, and Farley RA. (2001) Ouabain and substrate affinities of human Na,K-ATPase alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) when expressed separately in yeast cells. Am. J. Physiol. Cell Physiol. 281: C1355-C1364. PubMed
  • Wang J, Velotta JB, McDonough AA, and Farley RA. (2001) All human Na(+)-K(+)-ATPase alpha subunit isoforms have a similar affinity for cardiac glycosides. Am. J. Physiol. Cell Physiol. 281: C1336-C1343. PubMed
  • Farley RA, Schreiber S, Wang SG, and Scheiner-Bobis G. (2001) A hybrid between Na(+)-K(+)-ATPase and H(+)-K(+)-ATPase is sensitive to palytoxin, ouabain, and SCH28080. J. Biol. Chem. 276: 2608-2615. PubMed
  • Li M, Farley RA, and Lester HA. (2000) An intermediate state of the gamma-aminobutyric acid transporter GAT1 revealed by simultaneous voltage clamp and fluorescence. J. gen. Physiol. 115: 491-508. PubMed